可观测性
聊天模型可观测性
某些 ChatLanguageModel 和 StreamingChatLanguageModel 的实现
(参见"可观测性"列)允许配置 ChatModelListener(多个)来监听事件,例如:
- 向 LLM 发送的请求
- 来自 LLM 的响应
- 错误
这些事件包括各种属性,如 OpenTelemetry 生成式 AI 语义约定中所述,例如:
- 请求:
- 消息
- 模型
- 温度
- Top P
- 最大令牌数
- 工具
- 响应格式
- 等等
- 响应:
- 助手消息
- ID
- 模型
- 令牌使用情况
- 完成原因
- 等等
以下是使用 ChatModelListener 的示例:
ChatModelListener listener = new ChatModelListener() {
@Override
public void onRequest(ChatModelRequestContext requestContext) {
ChatRequest chatRequest = requestContext.chatRequest();
List<ChatMessage> messages = chatRequest.messages();
System.out.println(messages);
ChatRequestParameters parameters = chatRequest.parameters();
System.out.println(parameters.modelName());
System.out.println(parameters.temperature());
System.out.println(parameters.topP());
System.out.println(parameters.topK());
System.out.println(parameters.frequencyPenalty());
System.out.println(parameters.presencePenalty());
System.out.println(parameters.maxOutputTokens());
System.out.println(parameters.stopSequences());
System.out.println(parameters.toolSpecifications());
System.out.println(parameters.toolChoice());
System.out.println(parameters.responseFormat());
if (parameters instanceof OpenAiChatRequestParameters openAiParameters) {
System.out.println(openAiParameters.maxCompletionTokens());
System.out.println(openAiParameters.logitBias());
System.out.println(openAiParameters.parallelToolCalls());
System.out.println(openAiParameters.seed());
System.out.println(openAiParameters.user());
System.out.println(openAiParameters.store());
System.out.println(openAiParameters.metadata());
System.out.println(openAiParameters.serviceTier());
System.out.println(openAiParameters.reasoningEffort());
}
System.out.println(requestContext.modelProvider());
Map<Object, Object> attributes = requestContext.attributes();
attributes.put("my-attribute", "my-value");
}
@Override
public void onResponse(ChatModelResponseContext responseContext) {
ChatResponse chatResponse = responseContext.chatResponse();
AiMessage aiMessage = chatResponse.aiMessage();
System.out.println(aiMessage);
ChatResponseMetadata metadata = chatResponse.metadata();
System.out.println(metadata.id());
System.out.println(metadata.modelName());
System.out.println(metadata.finishReason());
if (metadata instanceof OpenAiChatResponseMetadata openAiMetadata) {
System.out.println(openAiMetadata.created());
System.out.println(openAiMetadata.serviceTier());
System.out.println(openAiMetadata.systemFingerprint());
}
TokenUsage tokenUsage = metadata.tokenUsage();
System.out.println(tokenUsage.inputTokenCount());
System.out.println(tokenUsage.outputTokenCount());
System.out.println(tokenUsage.totalTokenCount());
if (tokenUsage instanceof OpenAiTokenUsage openAiTokenUsage) {
System.out.println(openAiTokenUsage.inputTokensDetails().cachedTokens());
System.out.println(openAiTokenUsage.outputTokensDetails().reasoningTokens());
}
ChatRequest chatRequest = responseContext.chatRequest();
System.out.println(chatRequest);
System.out.println(responseContext.modelProvider());
Map<Object, Object> attributes = responseContext.attributes();
System.out.println(attributes.get("my-attribute"));
}
@Override
public void onError(ChatModelErrorContext errorContext) {
Throwable error = errorContext.error();
error.printStackTrace();
ChatRequest chatRequest = errorContext.chatRequest();
System.out.println(chatRequest);
System.out.println(errorContext.modelProvider());
Map<Object, Object> attributes = errorContext.attributes();
System.out.println(attributes.get("my-attribute"));
}
};
ChatLanguageModel model = OpenAiChatModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName(GPT_4_O_MINI)
.listeners(List.of(listener))
.build();
model.chat("Tell me a joke about Java");